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1 INTRODUCTION

Pollution of the environment with persistent toxic
compounds due to anthropogenic activities is one of
the most urgent problems to date. Aromatic and pol�
yaromatic hydrocarbons and their halogenated deriva�
tives are among the most hazardous toxins. Organic
compounds including phenols, biphenyls and their
derivatives are widespread in wastewaters of petroleum
refineries, gas and coal production plants; productions
of plastic materials, synthetic oils, fire stewing liquids,
dyes, herbicides, solvents and disinfectants. All of the
above compounds are chemical products with low sol�
ubility in water and can be tightly adsorbed by biolog�
ical materials. The pollutants are introduced into the
environment either intentionally (e.g., chloroorganic
pesticides, chemical plant protectants) or as a result of
accidents and disasters. About 30000 tons of various
chlorophenols were used from 1934 to 1988 in Finland
only. Formation of 100 to 300 g of chlorinated phenol
compounds (phenols, catechols, guaiacols, syringols
and vanillins) per ton of pulp during its chlorine

1 The article is published in the original.

bleaching resulted in accumulation of chlorophenol
compounds on the order of microgram per liter of
water and milligram per kg (dry weight) of bottom sed�
iments in the lakes into which the wastes were dis�
charged [1].

Hexachlorobenzene is used in a mixture with other
preparations as a seed disinfectant to control the dis�
eases of wheat, rye, buckwheat, soya, and other cereal
crops; it is a component of pyrotechnical mixtures
used in the defense potential of the country. Polychlo�
rinated biphenyls (PCBs) are a group of extremely
hazardous toxicants. Most PCB preparations contain
60 to 90 different derivatives. Great industrial signifi�
cance of PCBs is determined by their chemical inert�
ness, resistance to high temperatures, incombustibil�
ity, low saturated vapour pressure and high dielectric
constant. They are used mainly as cooling liquids in
transformers, as dielectrics in large capacitors and as
components of various products: lubricants, insulating
materials (in construction industry), glues, plastic
materials and rubber, insecticides, paints and var�
nishes, etc. Considerable amounts of these toxicants
got into the environment from 1.5 million tons of
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PCBs synthesized in the 1927–1980s [2], and now
they are found in surface and ground waters, silts and
soils. PCBs bind to organic soil components, accumu�
late in biological tissues and interact with insoluble
organic carbon in water systems. The chemical prop�
erties of polychlorobiphenyls facilitate their wide�
spread occurrence: they are found in air, water and
animal organisms.

PCBs are extremely resistant to physical, chemical
and biological changes [3]. Analysis of atmospheric air
over European Russia in the recent 10–15 years has
shown that the background content of anthropogenic
admixtures in it remains low. Still, it is reasonable to
assume that the concentration decreases of the 1990s
due to a decline in industrial production have already
come to an end, and background pollution of the
atmosphere by some contaminants, especially in the
cold season, could be expected to increase [4].

Polycyclic aromatic hydrocarbons (PAHs) also
pose a serious problem for the environment due to
their remarkable toxicity, mutagenic and carcinogenic
properties. The most widespread and toxic among
these compounds are benz(a)pyrene (BP), acenaph�
thene and pyrene. As PAHs are both direct and side
products of many industries, the level of their pollu�
tion in the environment is already high and constantly
increases. According to the data by the Federal Agency
for Hydrometeorology and Environmental Monitor�
ing [4], the level of atmospheric pollution is still high.
The degree of air pollution is estimated to be very high
and high in 142 cities (69% of the cities under observa�
tion) and to be low only in 17%. In Russia as a whole,
38% of urban population reside in territories, where no
observations of atmospheric pollution have been car�
ried out, and 55% in cities with high and very high lev�
els of atmospheric pollution (58.2 million people).

Chlorophenols, another group of toxic pollutants,
are able to dissociate oxidative phosphorylation, dis�
turb microsomal detoxification and influence protein
and RNA syntheses. Chlorinated biphenyls are also
highly toxic compounds that can act on organisms at
extremely low doses and affect the liver and kidney.
Their chronic effect is similar to that of chlorine deriv�
atives of naphthalene. They cause porphyria, i.e., acti�
vate the microsomal enzymes of the liver. This prop�
erty becomes more pronounced as the content of chlo�
rine in the molecules of chlorobiphenyls increases.

An extremely important issue is how the main
classes of pollutants can be degraded. Physicochemi�
cal methods either do not ensure detoxification of
chlorophenols or are very expensive compared to bio�
logical methods (e.g., the electron�beam method for
preparation of drinking water, considered to be one of
the most efficient and reliable, requires 5 kWt�h/m3 at
the output capacity of 50 m3/h [5]). The same is with
the incineration of chlorophenols: insufficiently high
temperatures inevitably lead to immeasurably more

toxic polychlorodioxins, and the required high tem�
peratures make the process very expensive.

Only enzymatic dehalogenation enables degrada�
tion products of halogenated phenols, PCBs and
PAHs, not hazardous for human health and the envi�
ronment. As problems of environmental protection
from various pollutants remain very up�to�date, great
attention is paid to isolation of native strains to use
them as a basis for developing microorganisms with
extended or improved biodegradabilities.

The following several trends can be distinguished
between in research into bacterial degradation of per�
sistent toxicants. All of them ultimately aim at creating
efficient technologies for biological cleanup of the
environment:

1. Studies of bacterial degradation pathways for dif�
ferent classes of xenobiotics. This stage includes isola�
tion and identification of microorganisms from pol�
luted sites, establishment of the transformation path�
ways of toxicants through identification of
metabolites, isolation of enzymes, their comparative
characterization in different groups of microorgan�
isms.

2. Research into the genetic basis of the degrada�
tion of xenobiotics, mainly (chlorinated) (poly)cyclic
aromatic compounds, bearing in mind, first of all, bio�
degradation plasmids and other mobile genetic ele�
ments enabling the strains to exchange biodegradation
genes, which leads to expand the biodegradation
potential of bacteria inhabiting the Earth.

3. Use of native bacterial preparations for efficient
elimination of pollutions.

4. Selection of hybrid strains with extended biode�
gradability. Construction of plasmids that carry the
genes of different pathways, making it possible to over�
come the “bottlenecks” of biodegradation in decom�
posing persistent pollutants; protein engineering for
changing the catalytic properties of particular
enzymes.

5. Development of biopreparations and introduc�
tion of (hybrid) strains into the regions with high levels
of pollution, enabling a decrease of local pollutions
(including the critical level).

Rhodococcus bacteria are an interesting and bio�
technologically promising group of microorganisms:
polluted sites and water bodies are often their natural
habitats. They are stable inhabitants of ecosystems
even under starvation conditions; degradation of pol�
lutants by these organisms is not affected by the pres�
ence of more accessible carbon sources. Rhodococcal
cells are hydrophobic due to the aliphatic chains of
mycolic acids in their cell wall, which enables them to
degrade hydrophobic pollutants through adhesion in
the oil/water interface. Some rhodococcal strains are
psychrophilic, which is highly significant for bioreme�
diation in cold climates. These bacteria can degrade
the broadest range of aromatic compounds [6–8].
Representatives of the genus are reported to be able to
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carry out various transformation reactions with poten�
tial industrial applications [9]. According to the data
by Martinková et al., the number of publications and
patents on nitriles and aromatic compounds trans�
formed by rhodococci has increased significantly after
1995 [8].

The goal of this review is to give the basic ideas of
metabolic potential and biochemical basis of Rhodo�
coccus biodegradation activity. We discuss methods of
adapting cultures to degrade high concentrations of
new substrates (both individual compounds and mix�
tures containing various classes of substituted aro�
matic compounds). Ways of increasing the concentra�
tions of xenobiotics to be degraded are presented, as
well as the principles of developing highly efficient
biopreparations.

1. GROWTH OF Rhodococcus ON VARIOUS 
AROMATIC SUBSTRATES

Analysis of publications describing the degradation
of various aromatic compounds by Rhodococcus bacte�
ria demonstrates that biodegradation activity is an
inherent property of this group of bacteria. Major
xenobiotic�degrading strains of the genus Rhodococcus
and substrates they utilize are given in Table 1. Previ�
ously we have isolated more than 50 cultures from
soils, based on the characteristic of growth on 3�chlo�
robenzoic acid (3�CBA), 2,4�D, and 4�chlorophenol
(4CP). Some of them were identified by the data of
16S RNA–DNA analysis as representatives of the
genus Rhodococcus. In the collection of E.L. Golovlev,
DSc (IBPM RAS) [36], which comprises about
500 strains of nocardioform microorganisms, about
20 of the most promising cultures from the group of
Rhodococcus growing on aromatic compounds were
tested by auxanography, with main attention on chlo�
rinated phenols and benzoates. Bacteria of the genus
Rhodococcus were found to degrade a broad range of
aromatic compounds as a sole carbon and energy
source. Two strains grew on an agarized medium with
toluene. Table 1 shows the data of auxanographic anal�
ysis of the bacteria. Growth of most of the tested
strains was maintained on methylated substrates:
para�cresol and para�toluate.

Figure 1 shows the growth curves for some of the
tested rhodococci grown on benzoate, para�toluate
and phenol. Growth on benzoate was followed by
the shortest lag phase. Almost all cultures growing on
p�toluate had a long lag phase. Strains Rhodococcus
rhodochrous 172, Rhodococcus sp. 400 and R. opacus
6a grew on this substrate most quickly: the optical den�
sity reached a maximum in less than 48 h [61].

Selection of strains by their growth on 4�methyl�
benzoic acid (4MBA) and chlorinated monoaromatic
compounds (2�chlorobenzoate (2CBA), 4�chlo�
robenzoate (4CBA), monochlorophenols (CP),
2,4�D) showed that most of the tested strains actively
grew on benzoic acid and phenol (Table 1). Many cul�

tures utilized 4MBA and chlorine�substituted sub�
strates. All of the tested strains grew well or with aver�
age efficiency on sodium benzoate. Growth on phenol
was more intensive, but not all strains effectively used
it as a growth substrate (Table 1). Six strains (R. opacus
4a, R. opacus 6a, R. rhodochrous 89, R. rhodnii 135,
Rhodococcus sp. 412, and R. opacus 557) were charac�
terized by the ability to utilize CBA as a growth sub�
strate. Nearly all strains grew well on at least one of the
monochlorphenols or on 2,4�D. Growth on 4MBA
was generally weaker than on phenol and benzoate: an
increment of optical density by more than 0.3–
0.4 units was observed only for half of the strains.

The screening results showed the following strains
to have the broadest substrate specificity: R. ruber P25
(grew on phenol, benzoate, 3�chlorobenzoate
(3CBA), 2CP, 4MBA); R. rhodochrous 172 and
Rhodococcus sp. 412 (on oxidized phenol, benzoate,
4CP, CBAs, 2,4�D, 4MBA); R. opacus 557 and R. opa�
cus 6a (phenol, benzoate, CBA, 2,4�D, 4MBA);
R. opacus 4a (benzoate, CBA, 2,4�D, 2CP, 4MBA);
and R. opacus 1G (phenol, benzoate, 4MBA, 4CP and
2,4D).

There were reports about a laboratory collection of
microorganisms isolated from technogenic soils of the
Perm Territory, Russia, which showed a degradation
activity against different aromatic compounds [11,
62]. Most strains of that collection had a high degrada�
tion activity against mono� and dichlorinated biphe�
nyls. Unique bacterial strains isolated in the course of
research included R. ruber P25, which could degrade
mono� and dichlorinated biphenyls to products of
central metabolism [10, 11]. Strain R. ruber P25 was
shown to possess unique genetic determinants respon�
sible for decomposition properties [11]. The ability of
strain R. ruber P25 to utilize a mixture of mono�, di�,
and trichlorinated biphenyls was demonstrated [63].
Polychlorobiphenyls remain pollutants of primary
importance and, until now, only a few bacterial strains
capable of complete decomposition of some low�chlo�
rinated isomers of PCB have been isolated. Neverthe�
less, some strains were shown to be able to cometabo�
lize PCB when grown with biphenyl (Table 1). PCB
aerobic transformation processes are reviewed in [7].
Rhodococcus jostii RHA1 is one of the most well�stud�
ied strains able to degrade/cometabolize a great num�
ber of aromatic compounds. The complete genome
sequence of Rhodococcus jostii strain RHA1 is avail�
able [64]. It was shown that three large linear plasmids
encode important catabolic capabilities including
genes for biphenyl and alkylbenzene pathways.
According to the obtained data, strain RHA1 encodes
26 peripheral aromatic pathways and 8 central aro�
matic pathways [64]. The number of communications
on the isolation of cultures active with respect to
biphenyl/PCB increased in the recent decade. Four
isomers of polychlorinated biphenyl (PCB)�degrading
Rhodococcus spp. (TA421, TA431, HA99, and K37)
were isolated from a termite ecosystem and under
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Table 1. Biodegradation activity of the rhodococci

Culture Growth substrate Reference

Rhodococcus ruber P25 Biphenyl, 2�chlorobiphenyl, 4�chlorobiphenyl, phenol, benzoate, 3�chlo�
robenzoate, 4�chlorobenzoate, 2�chlorophenol, p�toluate, p�hydroxyben�
zoate, phenanthrene, anthracene

10–13

Rhodococcus sp. B7a Mono�, di�, trichlorobiphenyls 14
R. jostii RHA1 Biphenyl, benzoate, ethylbenzene, phthalate, terephthalate, phenylacetic 

acid, cometabolism of polychlorinated biphenyl and biphenyl, polybromi�
nated diphenyl ethers and biphenyl, ethylbenzene, propane, styrene

15–18

R. globerulus P6 Biphenyl/4�chlorobiphenyl 19
Rhodococcus sp. TA421, TA431, HA99, 
and K37

Polychlorinated biphenyl/biphenyl 20

Rhodococcus sp. strain T104 Limonene, biphenyl 21
R. imtechensis strain RKJ300. 4�Nitrophenol, 2�chloro�4�nitrophenol, 2,4�dinitrophenol 22
R. erythropolis strains, HL 24�1 and HL 
24�2

2,4�Dinitrophenol 23

Rhodococcus sp. PN1 4�Nitrophenol 24
R. opacus SAO101 p�Nitrophenol 25
Rhodococcus spp. Phthalic acid esters 26
Alkali�tolerant R. erythropolis strains Benzene 27
Rhodococcus sp. strain MS11 3�Chlorobenzoate, all isomeric dichlorobenzenes, 1,2,3�trichlorobenzene, 

1,2,4�trichlorobenzene, 1,2,4,5�tetrachlorobenzene, m� and p�cresol
28

Nineteen strains of Rhodococcus spp. Hexahydro�1,3,5�trinitro�1,3,5�triazine (RDX) 29
R. erythropolis S�7 3�Chlorobenzoate 30
R. opacus 1CP 2,4�Dichlorophenol, phenol, benzoate, p�cresol, p�toluate, 2�chlorophenol 31–35
R. minimus 1a Benzoate, p�hydroxybenzoate, p�toluate, ferulic acid, 2�chlorophenol, 2,4�

D, anisic acid
36

R. opacus 4a Benzoate, monochlorobenzoates, 2,4�D, 2�chlorophenol, p�toluate 36
R. opacus 1G Phenol, benzoate, p�hydroxybenzoate, p�cresol, p�toluate, 4�chlorophenol, 

2,4�D
36,37

R. opacus 6a 3�Chlorobenzoate, ferulic acid, p�cresol, p�toluate, 4�chlorophenol, 
2,4,6�trichlorophenol, phenol, benzoate, 2,4�D

36, 38, 39

R. rhodochrous 172 Phenol, benzoate, p�hydroxybenzoate, phthalate, terephthalate, p�toluate, 
acetophenone, anisic acid, naphthalene, p�cresol, 2�chlorophenol, 4�chlo�
rophenol, 2,4�D, 3�chlorobenzoate 

36, 40

R. opacus 557 Phenol, benzoate, m�hydroxybenzoate, p�hydroxybenzoate, anisic acid, fer�
ulic acid, p�cresol, phthalate, acetophenone, 2,4�D, 3�chlorobenzoate

36,41

Rhodococcus sp. 412 Phenol, benzoate, 4�chlorophenol, chlorobenzoates, 2,4�D 36
Rhodococcus aetherovorans, R. opacus Phenanthrene, naphthalene 42
R. opacus, R. koreensis o�Xylene 43
Rhodococcus sp. strain DK17 o�Xylene, benzene, phenol, toluene, ethylbenzene, isopropylbenzene 44
Rhodococcus sp. strain 19070 Benzoate, substituted benzoates, toluene, xylenes 45
R. opacus GM�14 Benzene, chlorobenzene, 1,3� and 1,4�dichlorobenzenes, phenol, 3� and 4�

methylphenols, all monochlorophenols
46

Rhodococcus sp. BPG�8 1,3,5�Trihydroxybenzene 47
Rhodococcus sp. An 117 and An 213 Aniline, phenol and benzoate 48
R. opacus R7 Naphthalene, gentisate, o�xylene, dimethylphenols 49
R. opacus M213 Naphthalene, toluene, m�toluate, benzoate, p�hydroxybenzoate 50
Rhodococcus sp. NCIMB 112038 Naphthalene 51
Rhodococcus sp. B4 Naphthalene 52
R. erythropolis SN8 Dibenzothiophene and carbazole 53
R. erythropolis C2 Oil�degrading bacterium 54
R. baikonurensis EN3 Diesel oil 55
R. ruber, R. erythropolis Mixture of N�alkane and diesel oil 56
Rhodococcus sp. strain 33 Benzene 57
R. wratislaviensis strain J3 4�Nitrocatechol, 3�nitrophenol, 5�nitroguaiacol 58
R. erythropolis AN�13  Aniline 59
Rhodococcus sp. NCIMB 13064 Haloalkane 60
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alkaline conditions [20]. The bph gene cluster in strain
TA421 was shown to be highly homologous to bph
gene clusters in R. globerulus P6 and Rhodococcus sp.
RHA1. The order of the genes and the sequence of the
bph gene cluster in strain R. rhodochrous K37 and two
other Rhodococcus strains HA99 and TA431 differed in
these strains from those in P6, RHA1 and TA421.

Analysis of the complete nucleotide sequence of
the 210�kb linear plasmid of R. erythropolis BD2
revealed, among other things, a ipb gene cluster
encoding three subunits of isopropylbenzene dioxyge�

nase, 3�isopropylcatechol dioxygenase and IPB dihy�
drodiol dehydrogenase [65].

When summing up the data on the degradation
pathways of monoaromatic compounds by microor�
ganisms, one can distinguish between several basic
regularities of this process: (1) under anaerobic condi�
tions, chloroaromatic compounds are degraded by
reductive dehalogenation, which, however, does not
always lead to complete degradation of the initial sub�
strates [66, 67]; (2) under aerobic conditions, mono�
and dihalogenated, rarely trihalogenated substrates
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Fig. 1. Growth of the rhodococci Rhodococcus opacus 557 (1), Rhodococcus sp. 400 (2), R. rhodochrous 172 (3), R. opacus 6a (4),
R. minimus 1a (5), R. opacus 1G (6) on aromatic substrates: 1—phenol, 2—benzoate, 3—p�toluate (= 4�methylbenzoate,
4MBA).
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are converted into respective halocatechols; in this
case, dehalogenation occurs after the aromatic ring of
halocatechols opens up; polyhalogenated phenols are
first subjected to oxidative dehalogenation to form
(chloro)hydroxyhydroquinone followed by aromatic
ring opening [68].

The screening of Rhodococcus bacteria for the abil�
ity to grow on monoaromatic compounds, which can
be degraded with the ortho�cleavage of catechol and its
derivatives, showed that phenol and benzoic acid are
often degraded to form catechol, whose further degra�
dation is catalyzed by enzymes of the classical ortho�
pathway with narrow substrate specificity [69, 70]. It is
known that 2CP, 4CP and 2,4�D can be biodegraded
by enzymes of the modified ortho�cleavage pathway of
the formed chlorinated catechols (CCat). Degrada�
tion of 3CBA and 4CBA may be also accompanied by
the formation of CCat followed by their transforma�
tion by the modified ortho�pathway [68, 71]. Growth
of strain R. opacus 6a on p�substituted substrates
(4MBA, 4CP) induces the enzymes that perform the
aromatic ring cleavage and belong to various types of
intradiol dioxygenases different in subunit molecular
masses, storage stability and substrate specificity: (1)
methylcatechol 1,2�dioxygenase (MC 1,2�DO) is
characterized by a broad substrate specificity and can
cleave the aromatic ring of catechol (Cat), 3� and 4�
methylcatechols (3MCat and 4MCat), 3� and 4�chlo�
rocatechols (3CCat and 4CCat) and 3,5�dichlorocat�

echol. The best substrate for MC 1,2�DO is 4MCat;
(2) 4�chlorocatechol 1,2�dioxygenase is also charac�
terized by a broad substrate specificity, but its best sub�
strate is 4CCat; and (3) catechol 1,2�dioxygenase (Cat
1,2�DO) with a narrow substrate specificity, active
with Cat, 3MCat and 4MCat; the best substrate for it
is catechol [38, 39]. Substrate specificities of other cat�
echol 1,2�dioxygenases from various Rhodococcus
strains are presented in Table 2.

Since the ordinary and modified transformation
pathways of (chloro)catechols have been described
many times, we will dwell only on their main proper�
ties.

2. CHLORO/METHYLCATECHOL 
TRANSFORMATION PATHWAYS

The data on the transformation pathways of substi�
tuted catechols indisputably demonstrate that micro�
organisms show a diversity of possible sequences and
their modifications, by which the catechols formed are
transformed into central metabolism intermediates.
Some of these pathways, such as the ortho�cleavage
pathways of 3�chloro�, 4�chloro� and 3,5�dichloro�
catechols, may be considered as predominant and
have been described in quite a number of bacteria;
other pathways have been described only for a limited
number of strains. However, it is not improbable that
the description of such rare pathways in bacteria

Table 2. The oxidation rates of catechol (100%), 4�chlorocatechol (4�CCat), 3�methylcatechol (3MCat), 4�methylcate�
chol (4�MCat) by rhodococcal intradiol dioxygenases

Bacteria Growth substrate Enzyme
Relative activity, %, with

Ref.
4�CCat 3�MCat 4�MCat

Rhodococcus sp. DK17 Benzene Cat 1,2�DO ND 9 27 44

Rhodococcus sp. An 117 Aniline, phenol, benzoate Cat 1,2�DO 5–7 ND 60–62 48

Rhodococcus sp. An 213 Aniline Cat 1,2�DO 6 ND 58 48

Rhodococcus erythropolis 
AN�13

Aniline Cat 1,2�DO ND 127 75 72

R. rhodochrous NCIMB 
13259

Benzyl alcohol Cat 1,2�DO ND 79 68 73

R. rhodochrous N75 p�Toluate Cat 1,2�DO 5.7 64 82 74

R. opacus 1CP Benzoate Cat 1,2�DO 3.1 99 88 32

p�Toluate Cat 1,2�DO ND 73 89 35

CCat 1,2�DO 113 191 253

R. ruber P25 p�Toluate Cat 1,2�DO ND 195 117 12

R. opacus 6a p�Toluate Cat 1,2�DO ND 138 129 39

MCat 1,2�DO 112.6 150 282

4�Chlorophenol CCat 1,2�DO 66 58 139 38

R. opacus 1CP 2�Chlorophenol CCat 1,2�DO 50 283 270 75

4�Chlorophenol CCat 1,2�DO 96 208 242 76

ND – not determined, Cat l,2�DO  –  catechol 1,2�dioxygenase, MCat 1,2�DO – methylcatechol 1,2�dioxygenase, CCat 1,2�DO – chlorocat�
echol 1,2�dioxygenase.
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reflects not their poor distribution in nature but,
rather, poor knowledge of them.

2.1. 3�Chlorocatechol Branch of the Modified 
ortho�Pathway 

Data concerning the 3�chlorocatechol ortho�
cleavage pathway have been obtained mostly for
Gram�negative bacteria and are reviewed by Pieper
[7]. This pathway was among the first described for
Pseudomonas sp. B13 and Pseudomonas putida [71]
degrading 3�chlorobenzoate (Fig. 2). The main stages
and enzymes of this pathway are shown in Fig. 2.
3�Chlorocatechol formed at the first stage is trans�
formed under the action of chlorocatechol 1,2�dioxy�
genase (CC 1,2�DO) into 2�chloromuconate. Cycloi�
somerization of 2CM by chloromuconate cycloi�
somerase (CMCI) leads to the formation of trans�
dienelactone. Then, under the action of dienelactone
hydrolase (DLH), trans�dienelactone is transformed
into maleylacetate, which is reduced to β�ketoadipate
by maleylacetate reductase (MAR).

The peculiar features of the 3�chlorocatechol
branch of the modified ortho�pathway are as follows
[71, 77–87]:

1. Chlorocatechol 1,2�dioxygenase is character�
ized by the constant of high specificity to substrates
with substituent in the meta�position.

2. Chloromuconate cycloisomerase is able to cata�
lyze not only the reaction of 2�chloromuconate
cycloisomerization but also 5�chloromuconolactone
dehalogenation.

3. The reaction of 5�chloromuconolactone dehalo�
genation leads to the formation of tranns�dienelac�
tone.

4. Dienelactone hydrolase is active with trans� and
cis�isomers of dienelactone, though the affinity of the
enzyme to trans�dienelactone is higher than to the cis�
isomer.

2.2. 4�Chlorocatechol Branch of the Modified
ortho�Pathway

Degradation of chloroaromatic compounds by the
4�chlorocatechol branch takes place when growth
substrate oxidation results in the formation of 4�chlo�
rocatechol (4CCat) (Fig. 2). 4�CCat is an intermedi�
ate of degradation or transformation of 3� and 4�chlo�
rophenols by rhodococci [48]. Degradation of the
4CCat aromatic ring by CC 1,2�DO leads to the for�
mation of 3�chloromuconate. Cycloisomerization of
3�chloromuconate via cis�dienelactone results in the
formation of maleylacetate, which is a common inter�
mediate of 3� and 4�chlorocatechol branches.

R. erythropolis S�7 can grow and use 3�chloroben�
zoate as a sole carbon source in a temperatures range
of 10–30°C with the stoichiometric release of chloride
ions. The psychrotolerant ability was significant for
bioremediation in low temperature regions [30].

4�Chlorophenol degradation was studied in detail for
strain R. opacus 1CP. All enzymes of this pathway were
isolated: CC 1,2�DO [76], CMCI [88], DLH [89] and
MAR [90] and their encoding genes were cloned [91].
Crystals of Cat 1,2�DO were obtained from strain
R. rhodochrous NCIMB 13259 [73] and of 4�CC
1,2�DO, from R. opacus 1CP [92].

The peculiarities of the enzymes of the 4�chloro�
catechol branch are as follows [83–85, 93–95]:

1. Chlorocatechol 1,2�dioxygenase is able to cleave
a broad range of substrates, and the dioxygenase spec�
ificity constant is higher by an order of magnitude with
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the substrates having substituents in the para�position
compared to those in the meta�position.

2. The best substrate for chloromuconate cycloi�
somerase is 3�chloromuconate. This enzyme is able to
catalyze cycloisomerization of 2�chloromuconate;
however, this process leads to the formation of only
one compound, 5�chloromuconolactone, which is not
subjected further to dehalogenation so that trans�
dienelactone is not formed.

3. Dienelactone hydrolase is active with cis�
dienelactone and shows but an insignificant activity
with the trans�isomer. CMCI of the 4�chlorocatechol
branch are distinguished by the ability to efficiently
transform a broad range of muconates, with prefer�
ence for 2,4�dichloro� and 3�chloromuconates.

It was shown that the peculiarities of substrate
specificity of the enzymes of 4�chlorocatechol branch
in strain R. opacus 1CP do not allow it to efficiently
transform intermediates of 2�chlorophenol degrada�
tion. Indeed, strain R. opacus 1CP initially could not
grow on 2�chlorophenol. However, the variant of this
strain obtained after a long�time adaptation utilizes 2�
chlorophenol as a sole carbon and energy source [34].
It was shown that 2�chlorophenol degradation by the
new variant of the strain is mediated by an unusual set
of enzymes designated as a modified 3�chlorocatechol
pathway.

2.3. Modified 3�Chlorocatechol Branch 
in Rhodococcus opacus 1CP 

The gene cluster for 2�chlorophenol degradation
by the new modified ortho�pathway in strain R. opacus
1CP includes genes coding for 3CC 1,2�DO, CMCI,
chloromuconolactone�isomerase (CMLI) and DLH
[96]. 2�Chlorophenol degradation is accompanied by
the formation of 3CCat as the main intermediate. The
opening of 3CCat aromatic ring by CC 1,2�DO results
in the formation of 2�chloromuconate, which is trans�
formed into 5�chloromuconolactone under the action
of CMCI. Dehalogenation of the latter with CMLI
results in the formation of cis�dienelactone, which is a
substrate for DLH. The above enzymes substantially
differ in their properties from the enzymes of both the
3�chlorocatechol branch of Gram�negative bacteria
and the 4�chlorocatechol branch of Gram�positive
bacteria.

The peculiarities of the new modified ortho�path�
way in strain R. opacus 1CP are as follows:

1. 3�Chlorocatechol 1,2�dioxygenase was able to
oxidize a narrower range of substrates compared to
chlorocatechol 1,2�dioxygenase of the 4�chlorocate�
chol pathway; however, the level of catalytic activity
for all substrates was nearly the same and higher than
in 4�chlorocatechol 1,2�dioxygenase; at the same
time, 3�chlorocatechol 1,2�dioxygenase showed the
highest affinity to 3�substituted substrates.

2. Chloromuconate cycloisomerase performed the
reaction of cycloisomerization of 2�halomuconates
but could not dehalogenate the halomuconolactones
formed.

3. The pathways included an additional enzyme
homologous to muconolactone isomerase of the ordi�
nary ortho�pathway for catechol degradation and
absent in the previously described modified pathways
for chlorocatechol degradation (5�chloromuconolac�
tone isomerase), which performed dehalogenation of
5�chloromuconolactone and was not active with
unsubstituted muconolactone.

4. Dehalogenation of 5�chloromuconolactone
results in the formation of cis�dienelactone but not the
trans�isomer as in the case of the 3�chlorocatechol
branch of the modified ortho�pathway of Gram�nega�
tive bacteria.

5. Dienelactone hydrolase of the new modified
ortho�pathway differed in its structure and properties
from analogous enzymes of other branches.

The fourth enzyme common for all branches of the
modified ortho�pathway and for the hydroxyhydro�
quinol pathway is maleylacetate reductase. These
enzymes are rather similar in different bacteria [97–
100].

2.4. Meta�Cleavage of Chlorocatechols 

Chlorine�substituted catechols are usually not
degraded by the meta�pathway, because catechol 2,3�
dioxygenase is inactivated by 3�chlorocatechol [101,
102], while meta�degradation of 4�chlorocatechol is
unproductive due to accumulation of 5�chloro�2�
hydroxymuconic semialdehyde, supposedly toxic for
cells, in the culture medium [103, 104]. However, the
described catechol 2,3�dioxygenase of strain
Pseudomonas putida GJ31 degrades both 3�methylcat�
echol and 3�chlorocatechol by the meta�pathway
[105]. No such pathway is known as yet for rhodo�
cocci.

2.5. Modified Pathway for Methylcatechol Degradation

The pathway of methylcatechol ortho�degradation
was found in several bacteria of the genus Rhodococcus
including strain R. rhodochrous N75 [74, 106, 107]
(Fig. 3). Our studies have shown that Rhodococcus
bacteria are generally characterized by the ortho�
cleavage of 4MCat formed during p�toluate
(= 4MBA) degradation, though in different rhodo�
cocci this ability is realized by different enzyme sets
[35, 39]. Thus, the growth of strain R. opacus 1CP on
4MBA depends on simultaneous induction of the
enzymes (Cat 1,2�DO and 4CCat 1,2�DO) participat�
ing in the pyrocatechol and 4CP degradation path�
ways; in strain R. ruber P25, it is the enzyme degrading
methylcatechols at a high rate but not functionally
adapted to these substrates; in strains R. rhodochrous
172 and Rhodococcus sp. 400, it is Cat 1,2�DO of the
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common ortho�pathway with a narrow substrate spec�
ificity; and in strain R. opacus 6a it is a highly specific
enzyme, methylcatechol 1,2�dioxygenase, the best
substrate for which is 4MCat.

Strain R. opacus 6a was first adapted to growth on a
mixture of 4�chlorophenol (4CP) and p�toluate
(4MBA) taken at concentrations of 50 mg/l and
100 mg/l, respectively. The mixture ensured the
growth of cells pregrown both on 4CP and on p�tolu�
ate; however, the cells pregrown on 4CP were charac�
terized by lower growth indices. 4MBA was metabo�
lized to form 4�methylcatechol (4MCat), which is
usually cleaved by the meta�pathway [74]. The data
only show the ability of the total enzyme fraction to
catalyze the transformation of some or other interme�
diates formed in the degradation of initial substrates
but do not reflect the isofunctional composition of the
enzymes. The total catechol dioxygenase activity dur�
ing the growth on a substrate mixture is closer to that
typical of cells grown on 4MBA. Nevertheless, lower
values of relative dioxygenase activity with substituted
substrates do not exclude the possibility of induction
of enzymes with different substrate specificity [61].

3. APPROACHES TO THE ENHANCEMENT 
OF DEGRADATION ACTIVITY

Strain R. opacus 1CP destroys 4CP, which is
degraded by the modified ortho�pathway with 4CCat
as a central intermediate, the process being mediated
by the enzymes typical of this pathway [76]. Neverthe�
less, initially the growth of R. opacus 1CP on 4CP
(50 mg/l) was accompanied by a substantial lag phase
and a minor increase of OD560 to 0.2–0.3 U. Long�
time cultivation of strain R. opacus 1CP on a medium
with 4CP with repeated passages significantly changed
the character of growth on the toxicant�containing
medium. During the cultivation in a 10�1 bioreactor,
the lag phase was found to decrease to 4–5 h, the
whole fermentation lasted for about 47 h, with OD560

increasing from 0.12 to 1.50 units and the culture sum�
marily consumed 4 g/l of the substrate. As is known
from the literature data, 4CP at a concentration above
100 mg/l has an inhibitory effect on the growth of bac�
terial cultures. It is due to the fact that chlorophenols
are strong competitive inhibitors of chlorocatechol
1,2�dioxygenase (CC 1,2�DO), the key enzyme of
their decomposition [76]. Therefore, the ability of
strains R. opacus 1CP and R. opacus 6a to efficiently
degrade high concentrations of 4CP enables their use
for the cleanup of discharges containing this toxicant
in a broad range of concentrations.

Strain R. opacus 1G can grow on phenol taken in
concentrations up to 0.75 g/l [37]. With a phenol con�
centration of 0.3 g/l, OD545 was no more than 0.35 and
residual phenol was absent in the culture medium after
12 h of incubation. At a phenol concentration of
0.75 g/l, the maximum optical density (0.7) was
reached in 20 h. Intermittent introduction of phenol

by 0.25–0.5 g/l resulted in culture growth to
OD545 0.8–1.0; total substrate consumption increased
to 2 g/l.

Cell immobilization is known to have a positive
influence on the resistance of cultures to toxic com�
pounds, to contribute to bacterial culture stabilization
and degradation of higher concentrations of pollut�
ants. The observed effects are associated with provid�
ing the ability of immobilized cultures for cell–cell
interactions by Quorum�sensing (QS), which allows
the population to give a coordinated response to any
environmental impact [108]. Besides, the planktonic
forms of bacteria rarely occur under natural condi�
tions; it is more typical of them to be in the immobi�
lized state [109]. During the cultivation of R. opacus
1G in a liquid medium, culture growth was not
observed at phenol concentrations above 0.75 g/l. Cell
immobilization on polycaproamide fiber had a posi�
tive influence on phenol degradation: the substrate
taken at a concentration of 0.5, 1.0, and 1.5 g/l was
completely degraded in 24 h. Immobilized cells of
strain R. opacus 1G under flow cultivation conditions
proved to be capable of complete utilization of phenol
at a concentration up to 2.2 g/l [110].

A positive influence of immobilization on different
carriers has also been shown for other bacterial strains.
Immobilization of R. opacus 6a cells on polycaproam�
ide fiber resulted in a significant increase of 4�chlo�
rophenol concentrations from 50–100 mg/l to 200–
250 mg/l, at which the toxicant was completely
degraded [61].

R. erythropolis cells acclimated to phenol were
adsorbed on a Biolite ceramic support, which resulted
in a marked enhancement of their respiratory activity
and a shorter lag phase preceding active phenol degra�
dation [111]. Under optimum operation conditions,
immobilized cells in a laboratory�scale column reac�
tor packed with support beads were able to completely
degrade phenol in a defined mineral medium at a
maximum rate of 18 kg phenol m–3 per day.

When phenol�acclimated cells of the same strain
R. erythropolis UPV�1 were adsorbed on diatomaceous
earth, they were able to completely degrade phenol in
synthetic wastewater at a volumetric productivity of
11.5 kg phenol m–3 per day [112]. The authors also
reported that after wastewater conditioning (i.e., dilu�
tion, pH, nitrogen and phosphorous sources and
micronutrient amendments) immobilized cells were
able to completely eliminate the formaldehyde present
in two different industrial wastewaters obtained from
local resin manufacturing companies, which con�
tained both phenols and formaldehyde.

4. Rhodococcus�BASED BIOPREPARATIONS

All data available to date evidence that microbial
cooperation is important in microbial degradation of
organic pollutants. Analyzing the literature, we can
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conclude that bacterial mixtures with different degra�
dation potentials can be much more useful for the
treatment of wastewater and polluted soils than a sin�
gle bacterial strain. This is because polluted sites are
often contaminated with more than one compound,
pollution, as a rule, is of a complex nature and the
specificity of particular bacteria does not make it pos�
sible for them to decompose complex mixtures of
xenobiotics. Pollutants that may be present as mixtures
are, e.g., BTEX compounds, chlorobiphenyls, pesti�
cides, chemicals used for wood preservation (chlo�
robenzenes, chlorophenols and polyaromatic hydro�
carbons). A mixture of selected hydrocarbon�degrad�
ing strains, Acinetobacter sp., Pseudomonas sp. and
Rhodococcus sp., was used to eliminate 90% of a prep�
aration of total hydrocarbons, which consisted of ben�
zene, toluene, ethylbenzene, xylenes (BTEX) and
heavy aliphatic hydrocarbons, in 15 days in the pres�
ence of nutrients [113].

It was assumed that cooperative interaction of two
strains, Rhodococcus sp. CDT3 and Pseudomonas sp.
PBM11, could contribute to the decomposition of the
cypermethrin as well as eliminate the residues of the
intermediate products [114].

Strains R. rhodochrous, Gordonia sputi, Pseudomo�
nas putida were the basis for the cleanup of exhaust
gases from a cable factory’s coil�wire varnishing divi�
sion among the microflora settling the pilot biofilter
bed [115]. Isolated and identified bacteria metabo�
lized phenol at a high rate (about 14 to 42 g m–3 per
hour).

Crude oil, being a widespread fuel and energy
source, may cause large�scale pollutions. Effective
measures for purification of soils polluted with petro�
leum products and fuel�processing wastes are based on
the application of pollutant�decomposing strains. It
has been shown that the efficiency of such measures
depends both on the biodegradation potential of
decomposer preparations and on the conditions
(salinity, temperature, pH) under which these prepa�
rations are used. The preparations for oil�polluted soil
recovery developed at the Institute of Biochemistry
and Physiology of Microorganisms RAS are based on
bacteria of the genera Pseudomonas and Rhodococcus:
Rhodococcus sp. X5, Rhodococcus sp. S67, Pseudomo�
nas sp. 142 (pNF142) and Pseudomonas putida
BS3701 (pBS1141, pBS1142). These biopreparations
are based on psychrotrophic halotolerant microorgan�
isms degrading oil at low temperatures and salt con�
centrations up to 10% [116–121]. Experiments on
purification of soils contaminated with complex pol�
lutants (diesel fuel, gas condensate, black oil) showed
that the content of residual hydrocarbons decreased
within one month by 99.6% due to simultaneous
introduction of a biopreparation and a mineral fertil�
izer [116]. The authors studied the influence of the
method of cell drying on the maintenance of the max�
imum activity of oil�degrading biopreparations and
showed that contact drying had advantages over lyo�

philization expressed by a greater amount of living
cells [122].

Strains classified as R. erythropolis and Arthrobacter
spp. performed desulfurization of dibenzothiophene�
containing soil [123].

PROSPECTS

The review shows the following approaches to effi�
cient purification of wastewaters from pollutants:
adaptation of strains capable of degrading aromatic
compounds to growth on new substrates by intermit�
tent introduction of the toxicant, control of the pH
level, increase of the amount of toxicant introduced;
adaptation of strains to utilization of a mixture of aro�
matic compounds present in contaminated wastewa�
ters; direct introduction of single cultures or consortia
of microorganisms into soil and wastewaters; immobi�
lization of cells of highly active strains on different car�
riers to accelerate the degradation processes.

Rhodococci can utilize a wide range of pollutants as
the sole carbon and energy sources: unsubstituted aro�
matic compounds and those carrying different substit�
uents, diesel oil, carbazole, dibenzothiophene,
limonene, triazine (RDX), etc. This process is accom�
panied by the induction of the key enzymes with vari�
ous properties, providing the strains with the ability to
degrade isomeric substrates efficiently. Occurrence of
several enzymes with various affinities and catalytic
activities in a single strain enables it to adapt for
growth on new substrates, which supports the pros�
pects of using Rhodococcus bacteria for nature conser�
vation. Besides, the presence of isofunctional enzymes
indicates the general “mobility” of microbial biodeg�
radation systems ensuring their rapid adaptation to
new nutrient sources.

An important role in expanding the Rhodococcus
utilization activity is played by the transfer of genetic
material between various representatives of this group
of bacteria and closely related groups. Among other
things, this process is provided for by the presence of
linear plasmids, carrying biodegradation genes, in
rhodococcal cells. The exchange of this genetic mate�
rial expands the degradation potential of both particu�
lar microorganisms and the group as a whole. There�
fore, the approach based on the use of mobile genetic
elements for the transfer of particular (groups of)
genes among the microbial population is an advanced
trend for expanding the degradation potential.

The ability of rhodococci to synthesize surfactants,
little investigated until now, is also biotechnologically
promising. Along with a broad degradation potential,
the occurrence of various surfactants enables these
bacteria to adapt readily to the decomposition of
hydrophobic substrates.

Ever greater attention of investigators has been
recently attracted by systems providing for the com�
municative functions of bacteria. A rather advanced
approach in this respect is the use of chemical
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homologs of compounds involved in cell–cell interac�
tions for changing/expanding the metabolic activity of
bacteria. This, together with production of hybrid
strains by the method of mosaic assembly [124] makes
it possible to produce highly active bacterial prepara�
tions, which could be successfully used for the cleanup
of both polluted soils and wastewaters.
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